05.08.2022

Кто первым открыл клетки под микроскопом. Открытие ядра клетки. История изучения клетки. Клеточная теория


Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа, т.е. после 1600. Первое описание и изображения клеток дал в 1665 английский ботаник Р.Гук: рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»). Итальянский исследователь М.Мальпиги (1674), голландский ученый А. ван Лёвенгук, а также англичанин Н.Грю (1682) вскоре привели множество данных, демонстрирующих клеточное строение растений. Однако ни один из этих наблюдателей не понял, что действительно важным веществом был наполнявший клетки студенистый материал (впоследствии названный протоплазмой), а казавшиеся им столь важными «клетки» были просто безжизненными целлюлозными коробочками, в которых содержалось это вещество. До середины 19 в. в трудах ряда ученых уже просматривались зачатки некой «клеточной теории» как общего структурного принципа. В 1831 Р.Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой. новосибирск установка видеонаблюдения в доме цена брондавидео

Создание клеточной теории. Количество прямых сведений о клетке и ее содержимом чрезвычайно возросло после 1830, когда появились усовершенствованные микроскопы. Затем в 1838–1839 произошло то, что называют «завершающим мазком мастера». Ботаник М. Шлейден и анатом Т.Шванн практически одновременно выдвинули идею клеточного строения. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления.

Открытие протоплазмы. Сначала незаслуженно большое внимание уделяли стенкам клетки. Однако еще Ф. Дюжарден (1835) описал живой студень у одноклеточных организмов и червей, назвав его «саркодой» (т.е. «похожим на мясо»).

Эта вязкая субстанция была, по его мнению, наделена всеми свойствами живого. Шлейден тоже обнаружил в растительных клетках мелкозернистое вещество и назвал его «растительной слизью» (1838). Спустя 8 лет Г.фон Моль воспользовался термином «протоплазма» (примененным в 1840 Я. Пуркинье для обозначения субстанции, из которой формируются зародыши животных на ранних стадиях развития) и заменил им термин «растительная слизь». В 1861 М. Шультце обнаружил, что саркода содержится также в тканях высших животных и что это вещество идентично как структурно, так и функционально т.н. протоплазме растений. Для этой «физической основы жизни», как определил ее впоследствии Т.Гексли, был принят общий термин «протоплазма». Концепция протоплазмы в свое время сыграла важную роль; однако уже давно стало ясно, что протоплазма не однородна ни по своему химическому составу, ни по структуре, и этот термин постепенно вышел из употребления. В настоящее время главными компонентами клетки обычно считают ядро, цитоплазму и клеточные органеллы. Сочетание цитоплазмы и органелл практически соответствует тому, что имели в виду первые цитологи, говоря о протоплазме.

Прочие статьи:

Из-за блокировщика рекламы некоторые функции на сайте могут работать некорректно! Пожалуйста, отключите блокировщик рекламы на этом сайте.

История открытия и изучения клетки. Клеточная теория

О существовании клеток люди узнали после изобретения микроскопа. Самый первый примитивный микроскоп изобрел голландский шлифовальщик стекол З. Янсен (1590 г.), соединив вместе две линзы.

Английский физик и ботаник Р. Гук, рассмотрев срез пробки пробкового дуба обнаружил, что она состоит из ячеек, похожих на соты, которые он назвал клетками (1665 г.). Да, да… это тот самый Гук, именем которого назван известный физический закон.

Рис. "Срез пробкового дерева из книги Роберта Гука, 1635-1703"

В 1683 г. нидерландский исследователь А. Ван Левенгук, усовершенствовав микроскоп, наблюдал живые клетки и впервые описал бактерии.

Российский ученый Карл Бэр в 1827 г. обнаружил яйцеклетку млекопитающих. Этим открытием он подтвердил ранее высказанную идею английского врача У. Гарвея о том, что все живые организмы развиваются из яйца.

Ядро было сначала обнаружено в растительных клетках английским биологом Р. Брауном (1833 г.).

Большое значение для понимания роли клетки в живой природе имели труды немецких ученых: ботаника М. Шлейдена и зоолога Т. Шванна. Они первыми сформулировали клеточную теорию , основной пункт которой утверждал, что все организмы, в том числе растительные и животные, состоят из простейших частиц — клеток, а каждая клетка — самостоятельное целое. Однако в организме клетки действуют совместно, формируя гармоничное единство.

Позднее в клеточную теорию добавлялись новые открытия. В 1858 г. немецкий ученый Р. Вирхов обосновал, что все клетки образуются из других клеток путем клеточного деления: "всякая клетка из клетки".

Клеточная теория послужила основой возникновения в XIX в.

История открытия клеточного ядра

науки цитологии. К концу XIX в. благодаря усложнению микроскопической техники были открыты и изучены структурные компоненты клеток и процесс их деления. Электронный микроскоп позволил исследовать тончайшие структуры клеток. Было обнаружен удивительное сходство в тонком строении клеток представителей всех царств живой природы.

Основные положения современной клеточной теории:

  • клетка — структурно-функциональная единица всех живых организмов, а также единица развития;
  • клеткам присуще мембранное строение;
  • ядро — главная часть эукариотической клетки;
  • клетки размножаются только делением;
  • клеточное строение организмов свидетельствует о том, что растения и животные имеют единое происхождение.

1. Цитоплазма2. Функции цитоплазмы или роль цитоплазмы в клетке3. Cтроение цитоплазмы4. Движение цитоплазмы5. Органойды цитоплазмы6. Состав цитоплазмы

Цитоплазма — это ограниченная клеточной мембраной внутренняя среда клетки кроме ядра и вакуоли. Ранее было сказано, что клетка состоит на 80% из воды. Особенностью строения цитоплазмы клетки является то, большая часть водной структуры клетки приходится на цитоплазму. К твёрдой части цитоплазмы можно отнести белки, углеводы, фосфолипиды, холестерин и другими азотсодержащие органические соединения, минеральные соли, включения в виде капелек гликогена (у животных клеток) и другие вещества.

§ 10. История открытия клетки. Создание клеточной теории

В цитоплазме протекают почти все процессы клеточного метаболизма. Также цитоплазма содержит запасные питательные вещества и нерастворимые отходы обменных процессов.

Функции цитоплазмы или роль цитоплазмы :
1. Связывают все части клетки в единое целое;
2. В ней протекают химические процессы;
3. Осуществляет транспортировку веществ;
4. Выполняет опорную функцию.

К особенностям строения цитоплазмы можно отнести следующее:
1. Бесцветное вязкое вещество;
2. Находится в постоянном движении;
3. Содержит органойды (постоянные структурные компоненты и клеточные включения, и непостоянные структурные клетки);
4. Включения могут находиться в виде капель(жиры) и зёрен(белки и углеводы).

Посмотреть как выглядит цитоплазма можно на примере строения растительной клетки или животной клетки.

Движение цитоплазмы в клетке осуществляется фактически непрерывно. Само движение цитоплазмы осуществляется за счёт цитоскелета, а точнее за счёт изменения формы цитоскелета.

К органойдам цитоплазмы клетки можно отнести все органойды находяциеся в клетке, так как все они расположены внутри цитоплазмы. Все органойды в цитоплазме находятся в подвижном состоянии и могут перемещаться за счёт цитоскелета.

Состав цитоплазмы включает в себя:
1. Вода примерно 80%;
2. Белок около 10%;
3. Липиды около 2%;
4. Органические соли около 1%;
5. Неорганические соли 1%;
6. РНК примерно 0,7%;
7. ДНК примерно 0,4%.
Названный состав цитоплазмы справедлив для эукариотических клеток.

Открытию клетки предшествовало изобретение микроскопа в конце XVI века (З. Янсен).

Первым, кто увидел клетки был Р. Гук (1665 г.). С помощью увеличительного прибора он рассматривал срезы тканей живых организмов. На срезе растительной пробки он увидел ячеистую структуру и назвал отдельные ячейки клетками. Гук считал, что сами ячейки - это пустота, а содержимое живого организма заключено в каркасе (клеточной стенке).

Чуть позже А. Левенгук, используя более совершенный микроскоп, увидел именно содержимое клеток, в том числе увидел бактерии.

В 1827 г К. Бэром была обнаружена яйцеклетка, тем самым было доказано предположение, что все живые организмы развиваются из клетки.

Через несколько лет было отрыто содержащееся в клетке ядро (Р. Броун).

Обобщив ранее сделанные открытия, Т. Шванн разработал первый вариант клеточной теории, в которой доказывалось единство клеточного строения растений и животных. Однако в клеточной теории Шванна было одно ошибочное предположение, которое было заимствовано у другого исследователя клеток - М. Шлейдена. Оба ученых считали, что клетки могут образовываться из неклеточных структур и веществ.

В середине XIX века Р.

Открытие клетки

Вирхов доказал, что все клетки образуются только из других клеток путем их деления («каждая клетка из клетки»).

В это же время возникает наука цитология, которая изучает строение и процессы в клетках.

Во второй половине XIX века были открыты многие компоненты клетки, отмечена роль ядра в делении клетки.

В первой половине XX века с помощью электронного микроскопа были открыты остальные более мелкие структуры клетки. Стало очевидно, что клетки разных организмов и разных тканей имеют много общего.

ИСТОРИЯ БИОЛОГИИ С ДРЕВНЕЙШИХ ВРЕМЁН ДО НАЧАЛА ХХ ВЕКА

Бляхер Л.Я.

МИКРОСКОПИЧЕСКОЕ ИЗУЧЕНИЕ СТРОЕНИЯ И РАЗВИТИЯ ОРГАНИЗМОВ

Москва, "Наука", 1972

Первые описания клеток

Представление о дискретности организмов животных и растений, т. е. об их построении из отдельностей, называвшихся то «клетками» (Р. Гук), то «мешочками» или «пузырьками» (М. Мальпиги, Н. Грю), то «зернышками» (К. Вольф), долгое время оставалось лишенным конкретного содержания, так как о природе этих образований ничего не было известно. Прошли незамеченными описания Ф. Фонтаны (1781), видевшего и изобразившего в клетках кожи угря ядра и даже ядрышки; Фонтана, разумеется, был далек от понимания смысла и значения своих наблюдений. Даже в начале XIX в. на микроскопическое строение организованных тел были распространены совершение абстрактные воззрения. Например, в «Учебнике натурфилософии» (1809) Л. Окена живые тела описывались как скопления частиц, которые он называл «органическими кристаллами», «слизистыми пузырьками», «органическими точками», «гальваническими пузырьками» и даже «инфузориями».

Изобретение ахроматического микроскопа и постоянное усовершенствование его оптических возможностей позволили подойти к изучению подлинного строения клеток, прежде всего растительных; сначала в них удалось увидеть самое заметное структурное образование - оболочку. О подлинной дискретности тела высших растений стало возможным говорить лишь после того, как в 1812 г. немецкому ботанику Мольденгауэру методом мацерации удалось отделить друг от друга составляющие их клетки.

Открытие ядра


Зародышевый пузырек Пуркине.
Из работы Пуркине о развитии куриного яйца (1825)

Клеточное ядро, которое в животных клетках впервые видел Фонтана, было вновь открыто в 1825 г. в ненасиженном курином яйце (Я. Пуркине), а в 1831-1832 гг.-в растительных клетках (Ф. Мирбель). Р. Броун (1833) показал, что ядро является обязательной составной частью всякой клетки. Термин «ядро» и «ядрышко» были введены в употребление учеником Пуркине Г. Валентином; впрочем, о значении этих образований Пуркине и его сотрудники не догадывались. Вскоре клеточное ядро привлекло к себе пристальное внимание Ф. Мейена (1828), М. Шлейдена (1838) и Т. Шванна (1839). Именно Шлейдену принадлежит ошибочная теория новообразования клеток, в которой решающее значение он придавал ядру, называя его поэтому цитобластом (клеткообразователем).

Создание клеточной теории

Рубеж 30-х и 40-х годов XIX в. ознаменовался фундаментальным обобщением, получившим название клеточной теории. Говоря о достижениях естествознания первой половины и середины XIX в., Ф. Энгельс на первое место выдвигал «три великих открытия»: наряду с доказательством сохранения и превращения энергии и эволюционной теорией Дарвина, Энгельс назвал клеточную теорию. «Покров тайны,- писал он,- окутывавший процесс возникновения и роста и структуру организмов, был сорван. Непостижимое до того времени чудо предстало в виде процесса, происходящего согласно тождественному по существу для всех многоклеточных организмов закону».

Клеточная теория, т. е. учение о клетках как образованиях, составляющих основу строения растительных и животных организмов, подготовлялась исподволь. Материалы для этого обобщения накапливались в исследованиях Я. Пуркине и его учеников, в особенности Г. Валентина, в работах школы И. Мюллера, в частности в трудах Я. Генле. С растительными клетками сравнивал клетки мальпигиева слоя эпидермиса Э. Гурльт (1835), а клетки роговицы-А. Донне (1837). Вместе с тем неоднократно отмечались и различия между клетками растительных и животных организмов. Даже Пуркине, наиболее близко подошедший к формулировке клеточной теории, считал, что «зернышки», из которых состоят ткани животных, не тождественны «клеткам» растений, так как у растительных клеток важным отличительным признаком является оболочка, окружающая клеточную полость, а у животных клетки лишены заметной оболочки и наполнены зернистым содержимым.

Т.

17. История открытия клеток

В литературе, посвященной истории клеточной теории, долгое время высказывалось утверждение, время от времени повторяющееся и в настоящее время, что учение о клетках как структурных образованиях, общих для растений и животных, принадлежит в равной мере ботанику М. Шлейдену и зоологу Т. Шванну. Впрочем, еще в конце прошлого века М. Гейденгайн, а позднее Ф. Студничка, и в особенности советский гистолог и историк клеточной теории 3. С. Кацнельсон со всей определенностью показали, что роль Шлейдена и Шванна в создании клеточной теории неравноценна. Истинным основоположником этой теории должен считаться Шванн, использовавший кроме результатов собственных исследований наблюдения Пуркине и его учеников, Шлейдена и ряда других ботаников и зоологов.

Клеточная теория Шванна содержит три главных обобщения - теорию образования клеток, доказательства клеточного строения всех органов и частей организма и распространение этих двух принципов па рост и развитие животных и растений.

Возможность сопоставления растительных и животных клеток и признания полного соответствия (гомологии) между клетками растений и животных была следствием двух положений, из которых исходил Шванл. Он вместе со Шлейденом принимал, во-первых, что клетки являются полыми, пузырьковидными образованиями и, во-вторых, что в обоих царствах природы клетки возникают из бесструктурного неклеточного вещества, находящегося внутри клеток или между ними; последнее Шванн называл цитобластемой. 3. С. Кацнельсон высказал звучащую парадоксально и вместе с тем правильную мысль, что именно эти ошибочные взгляды на природу клеток и способ их возникновения позволили Шванну увидеть их сходство у растений и животных, тогда как более правильный взгляд на животные клетки как образования, состоящие из зернистого вещества и в отличие от растительных клеток, как правило, лишенные оболочек, сложившийся у Пуркине, отвлек его от идеи гомологии клеток у растений и животных.

Клеточную теорию как широкое биологическое обобщение Шванн выразил в следующих словах: «Развитию положения, что для всех органических производных существует общий принцип образования и что таковым является клеткообразование… можно дать название клеточной теории».

Открытие протоплазмы

Дальнейшая разработка клеточной теории была связана с изучением внутренней структуры клеток. Пуркине назвал основное вещество клеток «протоплазмой», во всяком случае, применительно к зародышам животных, а Дюжарден для обозначения этого основного вещества ввел термин саркода, которым первоначально называл содержимое простейших животных - корненожек, жгутиконосцев и инфузорий.

Как уже было отмечено в главе 20, в конце 30-х и начале 40-х годов существовали две точки зрения на строение простейших. X. Эренберг (1838) отстаивал мысль, что инфузории имеют сложное строение, сравнимое со строением многоклеточных животных. Ошибка Эренберга сводится к тому, что он слишком прямолинейно сравнивал инфузорий с многоклеточными животными и не сумел установить, что описанные им многочисленные «желудки» инфузорий на самом деле являются непостоянными образованиями, а появляющимися и исчезающими пищеварительными вакуолями. В дальнейшем, через несколько десятилетий после Эренберга, было установлено, что строение инфузорий действительно может быть очень сложным.

В противовес мнению Эренберга, Дюжарден отстаивал элементарное устройство инфузорий и других одноклеточных организмов, которые, по его представлениям, состоят из саркоды и лишены каких бы то ни было органов. Простейших от остальных, многоклеточных животных отделил немецкий зоолог К. Зибольд, автор «Учебника сравнительной анатомии беспозвоночных животных» (1848); однако только после работ М. Шульпе, А. Келликера и, особенно, Э. Геккеля получила всеобщее признание мысль, что тело простейших (Protozoa) состоит из одной клетки, соответствующей бесчисленным клеткам, из которых построен организм остальных животных, получивших название многоклеточных.

Полужидкое, зернистое вещество, которое, по Дюжардену, заполняет тело простейших животных, видели также и в клетках растений. Это содержимое растительных клеток в период, предшествующий созданию клеточной теории, обнаружили Ф. Мейен и М. Шлейден, но не видели в нем носителя жизненных свойств клетки. Это было сделано позднее, когда Гуго фон Моль в работе «О движении сока внутри клетки» (1846) на основе наблюдений доказал, что протоплазма обладает способностью к.самостоятельному движению. Наблюдения Моля на растительных клетках подтвердили Ф. Кон (1850) и Н. Прингсгейм (1854). Кон утверждал, что по оптическим, физическим и химическим свойствам capкода, или сократимое вещество клеток животных, вполне соответствует протоплазме растительных клеток. Ф. Лейдиг в «Учебнике гистологии человека и животных» (1857) высказал мысль, что оболочка, которую ранее считали обязательной и важнейшей составной частью клетки, часто может отсутствовать и что основными структурными компонентами клетки являются протоплазма и ядро.

Первые предположения об образовании клеток

Одной из основ клеточной теории было представление, высказанное Шлейденом и воспринятое Шванном, о свободном образовании клеток из бесструктурного вещества, находящегося внутри клеток (мнение Шлейдена) или вне их в виде специального клеткообразующего вещества, или цитобластемы (мнение Шванна). Эти представления о способе образования клеток мало отличались от взглядов на этот предмет П. Тюрпена (1827), считавшего, что зерна, возникающие на внутренней поверхности клеточной оболочки, превращаются в молодые клетки и что такой процесс клеткообразования может повторяться до бесконечности.

В 1833 т. Моль высказал столь же необоснованный взгляд, что новые клетки «возникают… без органической связи друг с другом и с материнским организмом… из взвешенной в клеточном соке мутной зернистой массы».

Открытие деления клеток

Одновременно со статьей Шлейдена, натолкнувшей Шванна на мысль об универсальном способе образования клеток и тем самым сыгравшей важную роль в создании клеточной теории, вышла в свет работа Моля «О развитии устьиц» (1838), в которой описано деление клеток, предназначенных для образования замыкательных клеток устьиц. Ядер, как следует из рисунков в упомянутой работе, Моль не видел, ни в клетках устьиц, ни в материнских клетках спор Anthoceros, деление которых он описал годом позже. В начале 40-х годов реальные знания о способе возникновения клеток были столь скудны, что появлению фантастических описаний этих явлений не приходится удивляться. Так, А. Грисбах (1844) утверждал, что молодые клетки развиваются из зачатков свободно плавающих в соке старых клеток, а Г. Карстен (1843) принимал эндогенное возникновение клеток по типу многократного «вложения» одна в другую клеток последовательных поколений. Шлейдену и Шванну были известны ранее опубликованные работы Дюмортье (1832) и Моля (1835), в которых описывалось размножение клеток нитчатых водорослей путем деления, однако они не придавали значения этим описаниям.

С начала 40-х годов против шлейден-шванновской теории клеткообразования решительно выступали ботаники (Н. И. Железнов, Ф. Унгер, К. Негели) и зоологи (Р. Ремак, А. Келликер, Н. А. Варнек). Их исследования подготовили обобщение, сформулированное известным немецким патологом Р. Вирховым в виде афоризма: omnis cellula e cellula [каждая клетка (происходит только) из клетки].

1. Кому принадлежит открытие клетки? Кто является автором и основоположником клеточной теории? Кто дополнил клеточную теорию принципом: «Каждая клетка – от клетки»?

Р. Вирхов, Р. Броун, Р. Гук, Т. Шванн, А. ван Левенгук.

Открытие клетки принадлежит Р. Гуку.

Принципом «Каждая клетка – от клетки» дополнил клеточную теорию Р. Вирхов.

2. Какие учёные внесли значительный вклад в развитие представлений о клетке? Назовите заслуги каждого из них.

● Р. Гук – открытие клетки.

● А. ван Левенгук – открытие одноклеточных организмов, эритроцитов, сперматозоидов.

● Я. Пуркине – открытие ядра в животной клетке.

● Р. Броун – открытие ядра в клетках растений, вывод о том, что ядро является обязательным компонентом растительной клетки.

● М. Шлейден – доказательства того, что клетка является основной структурной единицей растений.

● Т. Шванн – вывод о том, что все живые существа состоят из клеток, создание клеточной теории.

● Р. Вирхов – дополнение клеточной теории принципом "Каждая клетка – от клетки".

3. Сформулируйте основные положения клеточной теории. Какой вклад внесла клеточная теория в развитие естественнонаучной картины мира?

1. Клетка – элементарная структурная и функциональная единица живых организмов, обладающая всеми признаками и свойствами живого.

2. Клетки всех организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.

3. Клетки образуются путём деления исходной материнской клетки.

4. В многоклеточном организме клетки специализируются по функциям и образуют ткани. Из тканей построены органы и системы органов.

Клеточная теория оказала существенное влияние на развитие биологии и послужила фундаментом для дальнейшего развития многих биологических дисциплин – эмбриологии, гистологии, физиологии и др. Основные положения клеточной теории сохранили своё значение и по сей день.

4. Используя знания, полученные при изучении биологии в 6-9-м классах, на примерах докажите справедливость четвёртого положения клеточной теории.

Например, в состав внутренней (слизистой) оболочки тонкого кишечника человека входят клетки покровного эпителия, которые обеспечивают всасывание питательных веществ и выполняют защитную функцию. Клетки железистого эпителия секретируют пищеварительные ферменты и другие биологически активные вещества. Средняя (мышечная) оболочка образована гладкой мышечной тканью, клетки которой выполняют двигательную функцию, обусловливая перемешивание пищевых масс и их перемещение в сторону толстого кишечника. Наружная оболочка образована соединительной тканью, выполняющей защитную функцию и обеспечивающей прикрепление тонкого кишечника к задней стенке живота. Таким образом, тонкий кишечник образован различными тканями, клетки которых специализированы на выполнении тех или иных функций. В свою очередь, тонкий кишечник вместе с другими органами (пищеводом, желудком и т.д.) образует пищеварительную систему человека.

Покровные клетки кожицы листа выполняют защитную функцию. Замыкающие и побочные клетки образуют устьичные аппараты, обеспечивающие транспирацию и газообмен. Клетки хлорофиллоносной паренхимы осуществляют фотосинтез.

Открытие клеточного ядра. Шлейден и его теория цитогенеза

В состав жилок листа входят волокна, придающие механическую прочность, и проводящие ткани, элементы которых обеспечивают транспорт растворов. Следовательно, лист (орган растения) образован разными тканями, клетки которых выполняют определённые функции.

5. До 1830-х гг. было распространено мнение о том, что клетки - это «мешочки» с питательным соком, при этом главной частью клетки считалась её оболочка. Чем могло быть обусловлено такое представление о клетках? Какие открытия способствовали изменению представлений о строении и функционировании клеток?

Увеличительная способность микроскопов того времени не позволяла детально изучить внутреннее содержимое клеток, однако их оболочки были хорошо различимы. Поэтому учёные обращали внимание прежде всего на форму клеток и строение их оболочек, а внутреннее содержимое считали "питательным соком".

Изменению сложившихся представлений о строении и функционировании клеток в первую очередь способствовали работы Я. Пуркине (обнаружил ядро в яйцеклетке птиц, ввёл понятие "протоплазма") и Р. Броуна (описал ядро в клетках растений, пришёл к выводу, что оно является обязательной частью растительной клетки).

6. Докажите, что именно клетка является элементарной структурно-функциональной единицей живых организмов.

Клетка является обособленной, наименьшей по размерам структурой, обладающей всеми основными признаками живого: обменом веществ и энергии, саморегуляцией, раздражимостью, способностью расти, развиваться и размножаться, хранить наследственную информацию и передавать её дочерним клеткам при делении. У отдельных компонентов клетки все эти свойства в совокупности не проявляются. Из клеток состоят все живые организмы, вне клетки нет жизни. Поэтому клетка является элементарной структурной и функциональной единицей живых организмов.

7*. Размеры большинства растительных и животных клеток составляют 20-100 мкм, т. е. клетки являются довольно мелкими структурами. Чем обусловлены микроскопические размеры клеток? Объясните, почему растения и животные состоят не из одной (или нескольких) огромных клеток, а из множества мелких.

Для поддержания жизнедеятельности клетка должна постоянно обмениваться веществами с окружающей её средой. Потребности клетки в поступлении питательных веществ, кислорода, в выведении конечных продуктов обмена определяются её объёмом, а интенсивность транспорта веществ зависит от площади поверхности. Таким образом, с увеличением размеров клеток, их потребности растут пропорционально кубу (х3) линейного размера (х), а транспорт веществ "отстаёт", т.к. увеличивается пропорционально квадрату (х2). Как следствие в клетках тормозится скорость протекания процессов жизнедеятельности. Поэтому большинство клеток имеет микроскопические размеры.

Растения и животные состоят из множества мелких клеток, а не из одной (или нескольких) огромных потому что:

● Клеткам "выгодно" иметь мелкие размеры (причина этого освещена в предыдущем абзаце).

● Одной или нескольких клеток было бы недостаточно для выполнения всех специфических функций, лежащих в основе жизнедеятельности таких высокоорганизованных организмов, как растения и животные. Чем выше уровень организации живого организма, тем больше типов клеток входит в его состав и тем сильнее выражена клеточная специализация.

● В многоклеточном организме постоянно происходит обновление клеточного состава – клетки погибают и заменяются другими. Гибель одной (или нескольких) огромных клеток приводила бы к смерти всего организма.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Дашков М.Л.

Великий русский физиолог И. П. Павлов писал:

Науку принято сравнивать с постройкой. Как здесь, так и там трудится много народа, и здесь и там происходит разделение труда. Кто составляет план, одни кладут фундамент, другие возводят стены и так далее...

«Постройка» клеточной теории началась почти 350 лет назад.

Итак, 1665 год, Лондон, кабинет физика Роберта Гука. Хозяин настраивает микроскоп собственной конструкции. Профессору Гуку тридцать лет, он окончил Оксфордский университет, работал ассистентом у знаменитого Роберта Бойля.

Гук был неординарным исследователем. Свои попытки заглянуть за горизонт человеческих познаний он не ограничивал какой-либо одной областью. Проектировал здания, установил на термометре «точки отсчёта» — кипения и замерзания воды, изобрёл воздушный насос и прибор для определения силы ветра... Потом увлёкся возможностями микроскопа. Он рассматривал под стократным увеличением всё, что попадается под руку, — муравья и блоху, песчинку и водоросли. Однажды под объективом оказался кусочек пробки. Что же увидел молодой учёный? Удивительную картину — правильно расположенные пустоты, похожие на пчелиные соты. Позднее такие же ячейки он нашёл не только в отмершей растительной ткани, но и в живой. Гук назвал их клетками (англ. cells) и вместе с полусотней других наблюдений описал в книге «Микрография». Однако именно это наблюдение под № 18 принесло ему славу первооткрывателя клеточного строения живых организмов. Славу, которая самому Гуку была не нужна. Вскоре его захватили другие идеи, и он больше никогда не возвращался к микроскопу, а о клетках и думать забыл.

Зато у других учёных открытие Гука пробудило крайнее любопытство. Итальянец Марчелло Мальпиги называл это чувство «человеческим зудом познания». Он также стал рассматривать в микроскоп разные части растений. И обнаружил, что те состоят из мельчайших трубочек, мешочков, пузырьков. Разглядывал Мальпиги под микроскопом и кусочки тканей человека и животных. Увы, техника того времени была слишком слаба. Поэтому клеточное строение животного организма учёный так и не распознал.

Дальнейшая история открытия продолжилась в Голландии. Антони ван Левенгук (1632—1723) никогда не думал, что его имя будет стоять в ряду великих учёных. Сын промышленника и торговца из Делфта, он тоже торговал сукном. Так и прожил бы Левенгук незаметным коммерсантом, если бы не его страстное увлечение да любопытство. На досуге он любил шлифовать стёкла, изготовляя линзы. Голландия славилась своими оптиками, но Левенгук достиг небывалого мастерства. Его микроскопы, состоявшие лишь из одной линзы, были гораздо сильнее тех, которые имели несколько увеличительных стёкол. Сам он утверждал, что сконструировал 200 таких приборов, дававших увеличение до 270 раз. А ведь ими было очень трудно пользоваться. Вот что писал об этом физик Д. С. Рождественский: «Вы можете себе представить ужасное неудобство этих мельчайших линзочек. Объект вплотную к линзе, линза вплотную к глазу, носа девать некуда». Кстати, Левенгук до последних дней, а дожил он до 90 лет, сумел сохранить остроту зрения.

Через свои линзы естествоиспытатель увидел новый мир, о существовании которого не догадывались даже отчаянные фантазёры. Больше всего поразили Левенгука его обитатели — микроорганизмы . Эти мельчайшие существа обнаруживались везде: в капле воды и комке земли, в слюне и даже на самом Левенгуке. С 1673 г. подробные описания и зарисовки своих удивительных наблюдений исследователь отправлял в Лондонское королевское общество. Но учёные мужи не спешили ему верить. Ведь было задето их самолюбие: «неуч», «профан», «мануфактурщик», а туда же, в науку. Левенгук тем временем неустанно посылал новые письма о своих замечательных открытиях. В итоге академикам пришлось признать заслуги голландца. В 1680 г. Королевское общество избрало его полноправным членом. Левенгук стал мировой знаменитостью. Отовсюду в Делфт ехали смотреть на диковины, открываемые его микроскопами. Одним из самых знатных гостей был русский царь Пётр I — большой охотник до всего нового... Левенгуку, не прекращавшему исследований, многочисленные гости только мешали. Любопытство и азарт подгоняли первооткрывателя. За 50 лет наблюдений Левенгук открыл более 200 видов микроорганизмов и первым сумел описать структуры, которые, как мы теперь знаем, являются клетками человека. В частности, он увидел эритроциты и сперматозоиды (по его тогдашней терминологии, «шарики» и «зверьки»). Конечно, Левенгук и не предполагал, что это были клетки. Зато он рассмотрел и очень подробно зарисовал строение волокна сердечной мышцы. Поразительная наблюдательность для человека с такой примитивной техникой!

Антони ван Левенгук был, пожалуй, единственным за всю историю построения клеточной теории учёным без специального образования. Зато все остальные, не менее знаменитые исследователи клеток учились в университетах и были людьми высокообразованными. Немецкий учёный Каспар Фридрих Вольф (1733—1794), например, изучал медицину в Берлине, а затем в Галле. Уже в 26 лет он написал труд «Теория зарождения», за который был подвергнут на родине резкой критике коллег. (После этого по приглашению Петербургской академии наук Вольф приехал в Россию и остался там до конца жизни.) Что же нового для развития клеточной теории дали исследования Вольфа? Описывая «пузырьки», «зёрнышки», «клетки», он увидел их общие черты у животных и растений. Кроме того, Вольф впервые предположил, что клетки могут иметь определённое значение в развитии организма. Его труды помогли другим учёным правильно понять роль клеток.

Теперь хорошо известно, что главная часть клетки — ядро. Впервые, кстати, описал ядро (в эритроцитах рыб) Левенгук ещё в 1700 г. Но ни он, ни многие другие видевшие ядро учёные не придавали ему особого значения. Лишь в 1825 г. чешский биолог Ян Эвангелиста Пуркинье (1787—1869), исследуя яйцеклетку птиц, обратил внимание на ядро. «Сжатый сферический пузырёк, одетый тончайшей оболочкой. Он... преисполнен производящей силой, отчего я и назвал его "зародышевый пузырёк", — писал учёный.

В 1837 г. Пуркинье сообщил научному миру результаты многолетней работы: в каждой клетке организма животного и человека есть ядро. Это была очень важная новость. В то время было известно лишь о наличии ядра в растительных клетках. К такому выводу пришёл английский ботаник Роберт Броун (1773—1858) за несколько лет до открытия Пуркинье. Броун, кстати, и ввёл в употребление сам термин «ядро» (лат. nucleus). А Пуркинье, к сожалению, не сумел обобщить накопленные знания о клетках. Прекрасный экспериментатор, он оказался слишком осторожен в выводах.

К середине XIX в. наука наконец вплотную подошла к тому, чтобы достроить здание под названием «клеточная теория». Немецкие биологи Маттиас Якоб Шлейден (1804—1881) и Теодор Шванн (1810—1882) были друзьями. В их судьбах немало общего, но главное, что их объединяло, — «человеческий зуд познания» и страсть к науке. Сын врача, юрист по образованию, Маттиас Шлейден в 26 лет решил круто изменить свою судьбу. Он вновь поступил в университет — на медицинский факультет и по окончании его занялся физиологией растений. Целью его работы было понять, как происходит образование клеток. Шлейден совершенно справедливо полагал, что ведущая роль в этом процессе принадлежит ядру. Но, описывая возникновение клеток, учёный, увы, ошибался. Он считал, что каждая новая клетка развивается внутри старой. А это, конечно же, не так. Кроме того, Шлейден думал, что клетки животных и растений не имеют ничего общего. Вот почему не он сформулировал основные постулаты клеточной теории. Это сделал Теодор Шванн.

Воспитываясь в очень религиозной семье, Шванн мечтал стать священнослужителем. Для того чтобы лучше подготовиться к духовной карьере, он поступил на философский факультет Боннского университета. Но вскоре любовь к естественным наукам пересилила, и Шванн перешёл на медицинский факультет. После его окончания он работал в Берлинском университете, где изучал строение спинной струны — основного органа нервной системы животных из отряда круглоротых (класс водных позвоночных животных, к которым относятся миноги и миксины). Учёный открыл оболочку нервных волокон у человека (названную позже шванновской). Серьёзной научной работой Шванн занимался всего пять лет. В расцвете сил и славы он неожиданно бросил исследования, уехал в маленький тихий Льеж и стал преподавать. Религия и наука так и не сумели ужиться в этом замечательном человеке.

В октябре 1837 г. в Берлине произошло важнейшее для науки событие. Случилось всё в небольшом ресторанчике, куда зашли перекусить два молодых человека. Годы спустя один из них — Теодор Шванн вспоминал: «Однажды, когда я обедал с господином Шлейденом, этот знаменитый ботаник указал мне на важную роль, которую ядро играет в развитии растительных клеток. Я тотчас же припомнил, что видел подобный же орган в клетках спинной струны, и в тот же момент понял крайнюю важность, которую будет иметь моё открытие, если я сумею показать, что в клетках спинной струны это ядро играет ту же роль, что и ядро растений в развитии их клеток... С этого момента все мои усилия были направлены к нахождению доказательств предсуществования ядра клетки».

Усилия оказались не напрасны. Уже через два года вышла в свет его книга «Микроскопические исследования о соответствии в структуре и росте животных и растений». В ней были изложены основные идеи клеточной теории. Шванн не только первым увидел в клетке то, что обьединяет и животные, и растительные организмы, но и показал сходство в развитии всех клеток.

Конечно, авторство со Шванном разделяют и все учёные, возводившие «постройку». А особенно Маттиас Шлейден, подавший другу блестящую идею. Известен афоризм: «Шванн стоял на плечах Шлейдена». Его автор — Рудольф Вирхов, выдающийся немецкий биолог (1821—1902). Вирхову же принадлежит и другое крылатое выражение: «Omnis cellula е cellula», что с латыни переводится «Всякая клетка от клетки». Именно этот постулат стал триумфальным лавровым венком для теории Шванна.

Рудольф Вирхов изучал значение клетки для всего организма. Ему, окончившему медицинский факультет, особенно интересна была роль клеток при заболеваниях. Работы Вирхова о болезнях послужили базой для новой науки — патологической анатомии. Именно Вирхов ввёл в науку о болезнях понятие клеточной патологии. Но в своих исканиях он несколько перегнул палку. Представляя живой организм как «клеточное государство», Вирхов считал клетку полноценной личностью. «Клетка... да, это именно личность, притом деятельная, активная личность, и её деятельность есть... продукт явлений, связанных с продолжением жизни».

Шли годы, развивалась техника, появился электронный микроскоп, дающий увеличение в десятки тысяч раз. Учёные сумели разгадать немало тайн, заключённых в клетке. Было подробно описано деление, открыты клеточные органеллы, поняты биохимические процессы в клетке, наконец, была расшифрована структура ДНК. Казалось бы, ничего нового о клетке уже не узнать. И всё же есть ещё много непонятого, неразгаданного, и наверняка будущие поколения исследователей положат новые кирпичики в здание науки о клетке!

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1665 году , пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1675 году итальянский врач М. Мальпиги , а в 1682 году - английский ботаник Н. Грю подтвердили клеточное строение растений. О клетке стали говорить как о «пузырьке, наполненном питательным соком». В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632 -1723 ) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы (инфузории , амёбы , бактерии ). Также Левенгук впервые наблюдал животные клетки - эритроциты и сперматозоиды . Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. В 1802 -1808 годах французский исследователь Шарль-Франсуа Мирбель установил, что все растения состоят из тканей, образованных клетками. Ж. Б. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 году чешский учёный Я. Пуркине открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма ». В 1831 году английский ботаник Р. Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а содержимое. Клеточная теория строения организмов была сформирована в 1839 году немецким зоологом Т. Шванном и М. Шлейденом и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы. В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э Страсбургер - у растительных.

18. Клеточная теория - одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений , животных и остальных живых организмов с клеточным строением , в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

19.Основные положения клеточной теории

Современная клеточная теория включает следующие основные положения:

№1 Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет;.

№2 Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование;

№3 Клетки всех организмов сходны по своему химическому составу, строению и функциям;

№4 Новые клетки образуются только в результате деления исходных клеток;

№5 Клетки многоклеточных организмов образуют ткани, из тканей органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток;

№6 Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток - дифференцировка.

Развитие клеточной теории во второй половине XIX века

С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula». Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.

Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.

Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1950-е советский биолог О. Б. Лепешинская , основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов . Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, "одичавшими" генами.

Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.

Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.

Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.

Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии , симпласты ) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, т.е. образуется оно в результате метаболизма клеток.

Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Цитология («cytos» - ячейка, клетка) наука о клетке. Современная цитология изучает: строение клеток, их формирование как элементарных живых систем, исследует формирование отдельных клеточных компонентов, процессы воспроизведения клеток, репарации, приспособления к условиям среды и другие процессы. Другими словами, современная цитология – это физиология клетки.

Развитие учения о клетке тесно связано с изобретением микроскопа (от греческого «микрос» – небольшой, «скопео» – рассматриваю). Это связано с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм). Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше.

Например, диаметр животной клетки обычно не превышает 20 мкм, растительной – 50 мкм, а длина хлоропласта цветкового растения – не более 10 мкм. С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона.

Первый микроскоп был сконструирован в 1610 г. Галилеем и представлял собой сочетание линз в свинцовой трубке (рис. 1.1). А до этого открытия в 1590 г. изготовлением стекол занимались голландские мастера Янсены.

Рис. 1.1. Галилео Галилей (1564-1642)

Впервые микроскоп для исследований применил английский физик и естествоиспытатель Р. Гук (рис. 1.2, 1.4). В 1665 г. он впервые описал клеточное строение пробки и ввел термин «клетка»(рис. 1.3). Р. Гук сделал первую попытку подсчитать количество клеток в определенном объеме пробки.

Он сформулировал представление о клетке как о ячейке, полностью замкнутой со всех сторон и установил факт клеточного строения растительных тканей. Эти два основных вывода и определили направление дальнейших исследований в этой области.

Рис. 1.2. Роберт Гук (1635-1703гг)

Рис. 1.3. Клетки пробки, которые изучал Роберт Гук

Рис. 1.4. Микроскоп Роберта Гука

В 1674 году голландский торговец Антонио ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы (одноклеточные организмы, форменные элементы крови, сперматозоиды) и сообщил об этом научному обществу (рис. 1.5, 1.6) . Описания этих «анималькусов» снискали голландцу мировую известность, пробудили интерес к изучению живого микромира.

Рис. 1.5. Антонио ван Левенгук (1632-1723)

Рис. 1.6. Микроскоп Антонио ван Левенгука

В 1693 г. во время пребывания Петра I в Дельфе А. Левенгук продемонстрировал ему, как движется кровь в плавнике рыбы. Эти демонстрации произвели на Петра I такое большое впечатление, что вернувшись в Россию, он создал мастерскую оптических приборов. В 1725 году организована Петербургская академия наук.


Талантливые мастера И.Е. Беляев, И.П. Кулибин изготавливали микроскопы (рис. 1.7, 1.8, 1.9) , в конструировании которых принимали участие академики Л.Эйлер, Ф. Эпинус.

Рис. 1.7. И.П. Кулибин (1735-1818)

Рис. 1.8. И.Е. Беляев

Рис. 1.9. Микроскопы, изготовленные русскими мастерами

В 1671–1679 гг. итальянский биолог и врач Марчелло Мальпиги дал первое систематическое описание микроструктуры органов растений, положившее начало анатомии растений (рис. 1.10) .

Рис. 1.10. Марчелло Мальпиги (1628-1694)

В 1671–1682 гг. англичанин Неемия Грю подробно описал микроструктуры растений; ввел термин «ткань» для обозначения понятия совокупности «пузырьков», или «мешочков» (рис. 1.11) . Оба эти исследователя (они работали независимо друг от друга) дали изумительные по точности описания и рисунки. Они пришли к одному и тому же выводу относительно всеобщности построения растительной ткани из пузырьков.

Рис. 1.11. Неемия Грю (1641-1712)

В 20-х г. XIX в. наиболее значительные работы в области изучения растительных и животных тканей принадлежат французским ученым Анри Дютроше (1824 г.), Франсуа Распайлю (1827 г.), Пьеру Тюрпену (1829 г.). Они доказывали, что клетки (мешочки, пузырьки) являются элементарными структурами всех растительных и животных тканей. Эти исследования подготовили почву для открытия клеточной теории.

Один из основоположников эмбриологии и сравнительной анатомии, академик Петербургской академии наук Карл Максимович Бэр показал, что клетка – единица не только строения, но и развития организмов (рис. 1.12) .

Рис. 1.12. К.М. Бэр (1792-1876гг)

В 1759 г немецкий анатом и физиолог Каспар Фридрих Вольф доказал, что клетка есть единица роста (рис. 1.13) .

Рис. 1.13. К.Ф. Вольф (1733–1794)

1830-е гг. чешский физиолог и анатом Я.Э. Пуркине (рис. 1.14) , немецкий биолог И.П. Мюллер доказали, что клеточная организация является универсальной для всех видов тканей.

Рис. 1.14. Я.Э. Пуркине (1787-1869)

В 1833 г. британский ботаник Р. Броун (рис. 1.15) описал ядро растительной клетки.

Рис. 1.15. Роберт Броун (1773-1858)

В 1837 году Маттиас Якоб Шлейден (рис. 1.16) предложил новую теорию образования растительных клеток, признавая решающую роль в этом процессе клеточного ядра. В 1842 он впервые обнаружил ядрышки в ядре.

Согласно современным представлениям, конкретные исследования Шлейдена содержали ряд ошибок: в частности, Шлейден считал, что клетки могут зарождаться из бесструктурного вещества, а зародыш растения - развиваться из пыльцевой трубки (гипотеза самозарождения жизни).

Рис. 1.16. Маттиас Якоб Шлейден (1804-1881гг)

Немецкий цитолог, гистолог и физиолог Теодор Шванн (рис. 1.17) ознакомился с трудами немецкого ботаника М. Шлейдена, которые описывали роль ядра в растительной клетке. Сопоставляя эти работы с собственными наблюдениями, Шванн разработал собственные принципы клеточного строения и развития живых организмов.

В 1838 году Шванн опубликовал три предварительных сообщения клеточной теории, а в 1839 году - труд «Микроскопические исследования о соответствии в структуре и росте животных и растений», где опубликовал основные принципы теории клеточного строения живых организмов.

Ф. Энгельс утверждал, что создание клеточной теории было одним из трёх величайших открытий в естествознании XIX века, наряду с законом превращения энергии и эволюционной теории.

Рис. 1.17. Теодор Шванн (1810- 1882гг)

В 1834–1847 гг. профессор Медико-хирургической академии в Петербурге П.Ф. Горянинов (рис. 1.18) сформулировал принцип, согласно которому клетка является универсальной моделью организации живых существ.

Горянинов делил мир живых существ на два царства: царство бесформенное, или молекулярное, и органическое, или клеточное. Он писал, что «…органический мир есть прежде всего клеточное царство …». Он отметил в своих исследованиях, что все животные и растения состоят из соединенных между собой клеток, которые он назвал пузырьками, то есть высказал мнение об общем плане строения растений и животных.

Рис. 1.18. П.Ф. Горянинов (1796-1865)

В истории развития клеточной теории можно выделить два этапа:

1) период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных (около 300 лет);

2) период обобщения имеющихся данных в 1838 году и формулирование постулатов клеточной теории;

1. Впервые увидел и описал клетки растений: Р. Вирхов; Р. Гук; К. Бэр; A. Левенгук. 2. Усовершенствовал микроскоп и впервые увидел одноклеточные организмы: М. Шлейден; А. Левенгук; Р. Вирхов; Р. Гук.

3. Создателями клеточной теории являются: Ч. Дарвин и А. Уоллес; Т. Шванн и М. Шлейден; Г. Мендель и Т. Морган; Р. Гук и Н. Г. 4. Клеточная теория неприемлима для: грибов и бактерий; вирусов и бактерий; животных и растений; бактерий и растений. 5. Клеточное строение всех живых организмов свидетельствует о: единстве химического состава; многообразии живых организмов; единстве происхождения всего живого; единстве живой и неживой природы

Прокариоты – организмы, клетки которых не имеют ядра. Прокариоты (от лат. про - перед, вместо и греч. карион ядро) - над царство организмов, в состав которого входят царства Археи (Архебактерии) и Настоящие бактерии (Эубактерии). К настоящим бактериям относятся собственно бактерии и цианобактерии (устаревшее название - «сине-зеленые водоросли»). Аналог ядра - структура, состоящая из ДНК, белков и РНК.

Клетки прокариот имеют поверхностный аппарат и цитоплазму, в которой находятся немногочисленные органеллы и разнообразные включения. Прокариотические клетки не имеют большинства органелл (митохондрий, пластид, эндоплазматической сети, комплекса Гольджи, лизосом, клеточного центра и т. п.).

Размеры прокариот обычно варьируют в пределах 0, 2 -30 мкм в диаметре или длину. Иногда их клетки гораздо больших размеров; так, некоторые виды рода Спирохета могут достигать до 250 мкм длины. Форма клеток прокариот разнообразна: сферическая, палочковидная, в виде запятой или спирально закрученной нити и т. п.

В состав поверхностного аппарата клеток прокариот входят плазматическая мембрана, клеточная стенка, иногда –слизистая капсула. У большинства бактерий клеточная стенка состоит из высокомолекулярного органического соединения муреина. Это соединение образует сетчатую структуру, придающую жесткость клеточной стенке.

У цианобактерий в состав наружного слоя клеточной стенки входят полисахарид пектин и особые сократительные белки. Они обеспечивают такие формы движения, как скольжение или вращение.

В состав клеточной стенки часто входит тоненький слой - так называемая наружная мембрана, которая подобно плазматической мембране содержит белки, фосфолипиды и другие вещества. Она обеспечивает повышенную степень защиты содержимого клетки. Клеточная стенка бактерий обладает антигенными свойствами.

Слизистая капсула состоит из мукополисахаридов, белков или полисахаридов с белковыми включениями. Она не очень крепко связана с клеткой и легко разрушается под действием определенных соединений. Поверхность клеток некоторых бактерий покрыта многочисленными тонкими нитевидными выростами. С их помощью клетки бактерий обмениваются наследственной информацией, сцепляются между собой или прикрепляются к субстрату.

Рибосомы прокариот мельче рибосом эукариотических клеток. Плазматическая мембрана может образовывать гладкие или складчатые впячивания в цитоплазму. На складчатых мембранных впячиваниях находятся дыхательные ферменты и рибосомы, а на гладких – фотосинтезирующие пигменты.

В клетках некоторых бактерий (например, пурпурных) фотосинтезирующие пигменты находятся в замкнутых мешковидных структурах, образованных впячиваниями плазматической мембраны. Такие мешочки могут располагаться одиночно или же собраны в кучки. Подобные образования цианобактерий называют тилакоидами; они содержат хлорофилл и расположены одиночно в поверхностном слое цитоплазмы.

У некоторых бактерий и цианобактерий обитателей водоемов или заполненных водой почвенных капилляров, есть особые заполненные газовой смесью газовые вакуоли. Изменяя их объем, бактерии могут перемещаться в толще воды с минимальными затратами энергии.

У многих настоящих бактерий есть один, несколько или много жгутиков. Жгутики могут быть в несколько раз длиннее самой клетки, а их диаметр незначительный (10 -25 нм). Жгутики прокариот лишь внешне напоминают жгутики эукариотических клеток и состоят из одной трубочки, образованной особым белком. Клетки цианобактерий лишены жгутиков.

Особенности процессов жизнедеятельности прокариот § Клетки прокариот могут поглощать вещества лишь с незначительной молекулярной массой. Их поступление в клетку обеспечивают механизмы диффузии и активного транспорта. § Клетки прокариот размножаются исключительно бесполым путем: делением надвое, изредка почкованием. Перед делением наследственный материал клетки (молекула ДНК) удваивается.

Перенесение прокариотами неблагоприятных условий При наступлении неблагоприятных условий у некоторых прокариот происходит спорообразование. Некоторые прокариоты способны к инцистированию (от лат. ин - в, внутри и греч. кистис - пузырь). При этом вся клетка покрывается плотной оболочкой. Цисты прокариот устойчивы к действию радиации, высушиванию, но, в отличие от спор, неспособны переносить воздействие высоких температур. Кроме переживания неблагоприятных условий, споры и цисты обеспечивают распространение прокариот с помощью воды, ветра или других организмов.

Сделаем выводы § Клетки прокариот не имеют ядра и многих органелл (митохондрий, пластид, эндоплазматической сети, комплекса Гольджи, лизосом, клеточного центра и др.). Прокариоты - одноклеточные или колониальные организмы. § Поверхностный аппарат клеток прокариот включает плазматическую мембрану, клеточную стенку, иногда – размещенную над ней слизистую капсулу. В состав клеточной стенки большинства бактерий входит высокомолекулярное органическое соединение муреин, которое придает ей жесткость. § В цитоплазме прокариот находятся мелкие рибосомы и разнообразные включения. Плазматическая мембрана может образовывать гладкие или складчатые впячивания в цитоплазму. На складчатых мембранных впячиваниях размещены дыхательные ферменты и рибосомы, на

Сделаем выводы § В клетках прокариот есть одна или две ядерные зоны нуклеоиды, где расположен наследственный материал – кольцевая молекула ДНК. § Клетки некоторых бактерий имеют органеллы движения один, несколько или много жгутиков. § Клетки прокариот размножаются делением надвое, изредка - почкованием. Для некоторых видов известный процесс конъюгации, во время которого клетки обмениваются молекулами ДНК. Споры и цисты обеспечивают прокариотам переживание неблагоприятных условий и распространение в биосфере.